If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+16m-9=0
a = 4; b = 16; c = -9;
Δ = b2-4ac
Δ = 162-4·4·(-9)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-20}{2*4}=\frac{-36}{8} =-4+1/2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+20}{2*4}=\frac{4}{8} =1/2 $
| 3(g-7=2(10+7) | | 3w+2=-13 | | 6-9=6x-8x-1 | | x+7+3x-3=180 | | (20/x+18)+(x+18/20)=1 | | 62=5+3(1+3x) | | x-2x+7=3x-7 | | 5(-7+3b=) | | 7+-3=5+t | | -3x+2=(-7) | | r-0.8=-3.9 | | 6.4g+5=1.4g+20 | | -34-7x=8-7(x+6) | | 5t-7t=(5-7)t= | | 11a+5=40 | | 6x-14+3x=180 | | 20/x+18+x+18/20=1 | | +4+4x15= | | 0.25(x-10)=8 | | 3x+5/2+2x+3/7=19 | | -6+2x=(-10) | | x-0.7=1-0.2x | | 8s–4s=12= | | 7=d+5.5 | | 8s–4s=12 | | -2=x+5/9 | | -1/4+w=3/5 | | 2a-1=a+2 | | -2x(x-1)+8=0 | | 8/9=w+5 | | x/2-4=3/5+3(x/5-1/2) | | -5.4=p-4.6 |